Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(17): 26971-26982, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615120

RESUMO

Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to be the basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. The fact that the lattice fields "remember" the isolated particle fields is referred here as "Mie modal memory." On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying the physical basis of general resonant photonic lattices.

2.
Opt Express ; 29(12): 19183-19192, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154159

RESUMO

Periodic guided-mode resonance structures which provide perfect reflection across sizeable spectral bandwidths have been known for decades and are now often referred to as metasurfaces and metamaterials. Although the underlying physics for these devices is explained by evanescent-wave excitation of leaky Bloch modes, a growing body of literature contends that local particle resonance is causative in perfect reflection. Here, we address differentiation of Mie resonance and guided-mode resonance in mediating resonant reflection by periodic particle assemblies. We treat a classic 2D periodic array consisting of silicon spheres. To disable Mie resonance, we apply an optimal antireflection (AR) coating to the spheres. Reflectance maps for coated and uncoated spheres demonstrate that perfect reflection persists in both cases. It is shown that the Mie scattering efficiency of an AR-coated sphere is greatly diminished. The reflectance properties of AR-coated spherical arrays have not appeared in the literature previously. From this viewpoint, these results illustrate high-efficiency resonance reflection in Mie-resonance-quenched particle arrays and may help dispel misconceptions of the basic operational physics.

3.
Opt Lett ; 43(3): 358-361, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400858

RESUMO

Guided-mode resonant (GMR) thin films integrated on fiber tips are known to realize compact filters and sensors. However, limited progress in experimental realization has been reported to date. Here we provide a considerable advance in this technology, as we experimentally demonstrate efficient fiber-facet mounted device prototypes. To retain a large aperture for convenient coupling, we design and fabricate silicon nitride-based resonators on the tip of a multimode fiber. We account for light propagation along the multimode fiber with exact numerical methods. This establishes the correct amplitude and phase distribution of the beam incident on the tip-mounted GMR element, thus enabling us to properly predict the resonance response. To fabricate the integrated GMR structures on the tips of fibers, we employ standard microfabrication processes, including holographic interference lithography and reactive-ion etching. The experimental results agree with simulation with an example device achieving high efficiency of ∼77% in transmission. To investigate fiber sensor operation, an etched silicon nitride fiber tip filter is surrounded with solutions of various refractive indices, yielding an approximate sensitivity of 200 nm/RIU.

4.
Opt Lett ; 42(20): 4127-4130, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29028029

RESUMO

Resonant nanogratings and periodic metasurfaces express diverse spectral and polarization properties on broadside illumination by incident light. Cooperative resonance interactions may yield shaped spectra for particular applications, in contrast to a multilayer dielectric mirror. Here, we provide guided-mode resonance filters with flat-top spectra suitable for wavelength division multiplexing systems. Applying a single one-dimensional grating layer sandwiched by two waveguides, we theoretically achieve high-efficiency flat-top spectra in the near-infrared region. This result is obtained by inducing simultaneous nearly degenerate resonant modes. The resonance separation under this condition controls the width of the flat-top spectrum. This means we can implement spectral widths ranging from a sub-nanometer to several nanometers applying fundamentally the same device architecture.

5.
Opt Express ; 25(8): 8680-8689, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437945

RESUMO

We demonstrate unpolarized wideband reflectors fashioned with orthogonal serial resonant reflectors. Unpolarized incident light generates internal TM- and TE-polarized reflections that are made to cooperate to extend the bandwidth of the composite spectral reflectance. The experimental results presented show ~42% band extension by a two-grating module. In addition, good angular tolerance is found because the orthogonal arrangement simultaneously supports classical and fully conic mountings at oblique angles. The resulting spectra form contiguous zero-order reflectance across wide spectral/angular regions. Furthermore, using a multimodule device with serial reflectors fabricated with silicon-on-quartz wafers with different device layer thicknesses, extreme band extension is achieved providing ~56% fractional bandwidth with reflectance exceeding 98%. These results imply potential for developing lossless unpolarized mirrors operating in diverse spectral regions of practical interest.

6.
Opt Lett ; 41(20): 4704-4707, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005872

RESUMO

Narrow bandpass filters are applied in laser systems, imaging, telecommunications, and astronomy. Traditionally implemented with thin-film stacks, there is recent interest in alternative means incorporating photonic resonance effects. Here, we demonstrate a new approach to bandpass filters that engages the guided-mode resonance effect working with a cavity-based Fabry-Perot resonance to flatten and steepen the pass band. Both of these resonance mechanisms are native to simple resonant bandpass filters placed in a cascade. Numerical examples provide quantitative spectral properties including pass-band shape and sideband levels. Thus, we compare the spectra of single-layer 1D and 2D resonant gratings with the dual-cascade design incorporating identical gratings. Two- and three-cavity designs are measured against a classic multi-cavity thin-film filter with 151 layers. Whereas these initial results show comparable and improved results achieved with sparse structures, the challenge remains of developing a suitable fabrication technology to capitalize on this promise.

7.
ACS Appl Mater Interfaces ; 8(44): 30165-30175, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27759367

RESUMO

We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

8.
Opt Lett ; 41(14): 3305-8, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420521

RESUMO

Bandpass filters based on subwavelength dielectric gratings are grounded in physical principles that are totally distinct from their thin-film counterparts. Ease in fabrication, design scalability, material sparsity, and on-chip integration compatibility makes them a promising alternative especially for long-wavelength applications. Here we demonstrate the interesting attribute of resonant bandpass filters of high angular stability for fully conical light incidence. Fashioning an experimental bandpass filter with a subwavelength silicon grating on a quartz substrate, we show that fully conical incidence provides an angular full width at half-maximum linewidth of ∼9.5° compared to a linewidth of ∼0.1° for classical incidence. Slow angular variation of the central wavelength with full conical incidence arises via a corresponding slow angular variation of the resonant second diffraction orders driving the pertinent leaky modes. Moreover, full conical incidence maintains a profile with a single passband as opposed to the formation of two passbands characteristic of resonant subwavelength gratings under classical incidence. Our experimental results demonstrate excellent stability in angle, spectral profile, linewidth, and efficiency.

9.
Opt Express ; 24(5): 4542-4551, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092281

RESUMO

Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.

10.
Nanoscale ; 8(2): 812-25, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26450829

RESUMO

Hierarchical three-dimensional (3D) porous nanonetworks of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets (NSs) are grown and decorated on flexible conductive textile substrate (CTs) via a simple two-electrode system based electrochemical deposition (ED) method. By applying a proper external cathodic voltage of -1.2 V for 15 min, the Ni-Co LDH NSs are densely deposited over the entire surface of the CTs with good adhesion. The flexible Ni-Co LDH NSs on CTs (Ni-Co LDH NSs/CTs) architecture with high porosity facilitates enhanced electrochemical performance in 1 M KOH electrolyte solution. The effect of growth concentration and external cathodic voltage on the electrochemical properties of Ni-Co LDH NSs/CTs is also investigated. The Ni10Co5 LDH NSs/CTs electrode exhibits a high specific capacitance of 2105 F g(-1) at a current density of 2 A g(-1) as well as an excellent cyclic stability as a pseudocapacitive electrode due to the advantageous properties of 3D interconnected porous frameworks of Ni10Co5 LDH NSs/CTs. This facile fabrication of bimetallic hydroxide nanostructures on CTs can provide a promising electrode for low-cost energy storage device applications.

11.
Nanoscale Res Lett ; 10(1): 364, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377217

RESUMO

Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and ß-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of ß-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and ß-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

12.
Nanoscale Res Lett ; 10(1): 1032, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264687

RESUMO

Vertically aligned ZnO nanorod array (NRA)-based ultraviolet (UV) photodetectors (PDs) were successfully fabricated and optimized via a facile hydrothermal process. Using a shadow mask technique, the thin ZnO seed layer was deposited between the patterned Au/Ti electrodes to bridge the electrodes. Thus, both the Au electrodes could be connected by the ZnO seed layer. As the sample was immersed into growth solution and heated at 90 °C, the ZnO NRAs were crystallized and vertically grown on the ZnO seed layer, thus creating a metal-semiconductor-metal PD structure. To investigate the size effect of ZnO NRAs on photocurrent, the PDs were readily prepared with different concentrations of growth solution. For the ZnO NRAs grown at 25 mM of concentration, the PD with 10 µm of channel width (i.e., gap distance between two electrodes) exhibited a high photocurrent of 1.91 × 10(-4) A at an applied bias of 10 V under 365 nm of UV light illumination. The PD was optimized by adjusting the channel width. For 15 µm of channel width, a relatively high photocurrent on-off ratio of 37.4 and good current transient characteristics were observed at the same applied bias. These results are expected to be useful for cost-effective and practical UV PD applications.

13.
ACS Appl Mater Interfaces ; 7(37): 20520-9, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26301328

RESUMO

Highly transparent and flexible triboelectric nanogenerators (TENGs) were fabricated using the subwavelength-architectured (SWA) polydimethylsiloxane (PDMS) with a nanoporous anodic aluminum oxide (AAO) template as a replica mold. The SWA PDMS could be utilized as a multifunctional film for a triboelectric layer, an antireflection coating, and a self-cleaning surface. The nanopore arrays of AAO were formed by a simple, fast, and cost-effective electrochemical oxidation process of aluminum, which is relatively impressive for fabrication of the TENG device. For electrical contacts, the SWA PDMS was laminated on the indium tin oxide (ITO)-coated polyethylene terephthalate (PET) as a bottom electrode, and the bare ITO-coated PET (i.e., ITO/PET) was used for the top electrode. Compared to the ITO/PET, the SWA PDMS on the ITO/PET improved the transmittance from 80.5 to 83% in the visible wavelength region and also had high transmittances of >85% at wavelengths of 430-455 nm. The SWA PDMS also exhibited the hydrophobic surface with a water contact angle (θCA) of ∼115°, which can be useful for self-cleaning applications. The average transmittance (Tavg) of the entire TENG device was observed to be ∼70% over a broad wavelength range. At an external pushing frequency of 0.5 Hz, for the TENG device with the ITO top electrode, open-circuit voltage (VOC) and short-circuit current (ISC) values of ∼3.8 V and ∼0.8 µA were obtained instantaneously, respectively, which were higher than those (i.e., VOC ≈ 2.2 V, and ISC ≈ 0.4 µA) of the TENG device with a gold top electrode. The effect of external pushing force and frequency on the output device performance of the TENGs was investigated, including the device robustness. A theoretical optical analysis of SWA PDMS was also performed.

14.
Opt Express ; 23(3): A169-79, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836246

RESUMO

We demonstrated the improved conversion efficiency (η) of dye-sensitized solar cells (DSSCs) using the textile-patterned polydimethylsiloxane (PDMS) antireflection layers prepared by metal-coated textile master molds by a simple soft imprint lithography. When light propagates through the textile-patterned surface of PDMS (i.e., textile PDMS) laminated on the outer glass surface deposited with fluorine-doped tin oxide (i.e., FTO/glass), both the transmitted and diffused lights into the photo-anode of DSSCs were simultaneously enhanced. Compared to the bare FTO/glass, the textile PDMS increased the total transmittance from 82.3 to 85.1% and its diffuse transmittance was significantly increased from 5.9 to 78.1% at 550 nm of wavelength. The optical property of textile PDMS was also theoretically analyzed by the finite-difference time-domain simulation. By laminating the textile PDMS onto the outer glass surface of DSSCs, the η was enhanced from 6.04 to 6.51%. Additionally, the fabricated textile PDMS exhibited a hydrophobic surface with water contact angle of ~123.15°.

15.
Nanoscale ; 7(6): 2735-42, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25584497

RESUMO

We report the facile fabrication of wire-shaped ultraviolet photodetectors (WUPDs) by employing a nanostructured zinc oxide (ZnO)/nickel oxide (NiO) coaxial p-n heterojunction. The WUPD consists of a ZnO/NiO coaxial Ni wire and a twisted gold (Au) wire where the Ni and Au are used as the anode and cathode, respectively. For the coaxial p-n heterojunction, the NiO nanostructures (NSs) and the ZnO nanorods (NRs) are subsequently formed on the surface of Ni wire via thermal oxidation and hydrothermal growth processes. With an applied bias of -3.5 V, the WUPD exhibits good photoresponsivity of 7.37 A W(-1) and an external quantum efficiency of 28.1% at an incident light wavelength of 325 nm. Under the UV illumination at a wavelength of 365 nm, the dark current and photocurrent are -3.97 × 10(-7) and -8.47 × 10(-6) A, respectively. For enhancing the photocurrent, the WUPD is threaded through a silver (Ag) coated glass tube which acts as a waveguide to concentrate the UV light of 365 nm on the WUPD. As a result, the photocurrent is significantly improved up to -1.56 × 10(-5) A (i.e., 1.84 times) at the reverse bias of -3.5 V.

16.
ACS Appl Mater Interfaces ; 6(9): 6631-7, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24754224

RESUMO

Vertically-grown ZnO nanorod arrays (NRAs) on indium tin oxide (ITO)-coated polyethylene terephthalate (PET), as a top electrode of nanogenerators, were investigated for the antireflective property as well as an efficient contact surface in bare polydimethysiloxane (PDMS)-based triboelectric nanogenerators. Compared to conventional ITO-coated PET (i.e., ITO/PET), the ZnO NRAs considerably suppressed the reflectance from 20 to 9.7% at wavelengths of 300-1100 nm, creating a highly transparent top electrode, as demonstrated by theoretical analysis. Also, the interval time between the peaks of generated output voltage under external pushing forces was significantly decreased from 1.84 to 0.19 s because the reduced contact area of the PDMS by discrete surfaces of the ZnO NRAs on ITO/PET causes a rapid sequence for triboelectric charge generation process including rubbing and separating. Therefore, the use of this top electrode enabled to operate the transparent PDMS-based triboelectric nanogenerator at high frequency of external pushing force. Under different external forces of 0.3-10 kgf, the output voltage and current were also characterized.

17.
Nanoscale ; 6(8): 4371-8, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24626720

RESUMO

We investigate the mechanism of light extraction enhancement of a GaN-based light-emitting diode (LED) grown on patterned sapphire substrate (PSS), that has ZnO nanorod arrays (NRAs) fabricated on top of the device using the hydrothermal method. We found that the light output power of the LED with ZnO NRAs increases by approximately 30% compared to the conventional LED without damaging the electrical properties of the device. We argue that the gradual decrease of the effective refractive index, which is caused by the fabrication of ZnO NRAs, is the mechanism of the observed improvement. Our argument is confirmed by cross-sectional confocal scanning electroluminescence microscopy (CSEM) and the theoretical simulations, where we observed a distinct increase of the transmission at the interface between LED and air at the operation wavelength of the LED. In addition, the plane-view CSEM results indicate that ZnO NRAs, which were grown on the bare p-type GaN layer as an electrical safety margin area, also contribute to the enhanced light output power of the LED, which indicate further enhancement is manifested even in the optically ineffective sacrificial area.

18.
Nanoscale Res Lett ; 8(1): 511, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305510

RESUMO

We reported ZnO nanorod-based piezoelectric nanogenerators (NGs) with Au-coated silica sphere array as an efficient top electrode. This electrode can readily bend the ZnO nanorods due to its enhanced surface roughness, thus resulting in more increased and regular piezoelectric charge output. Under a low external pushing force of 0.3 kgf, the output current and voltage were increased by approximately 2.01 and 1.51 times, respectively, in comparison with a conventional Au top electrode without silica spheres. Also, the effect of Au-coated silica spheres on the bending radius of ZnO nanorods was theoretically investigated.

19.
J Nanosci Nanotechnol ; 13(5): 3230-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858835

RESUMO

The trivalent europium ions-doped yttrium silicate (Y2SiO5:Eu3+) nanocrystalline phosphors were synthesized via a sol-gel method, followed by post thermal annealing. The effects of thermal annealing temperature and doping concentration on the structural and luminescent properties of Y2SiO5:Eu3+ nanocrystalline phosphors were systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence measurements. The nanocrystalline phosphors with a high crystallinity were obtained at an annealing temperature of 1300 degrees C. The luminescent spectra were affected strongly by the Eu3+ ion concentration and annealing temperature. The Eu3+ ion concentration was optimized at 5 mol%, exhibiting excellent red emission (-612 nm) corresponding to the 5D0 --> 7F2 transition of Eu3+ ions at the excitation wavelengths of 262 and 396 nm. For the optimized Y2SiO5:Eu3+ nanocrystalline phosphors, the lifetimes were also estimated from the decay curves under the ultraviolet excitations.


Assuntos
Európio/química , Medições Luminescentes/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silicatos/química , Ítrio/química , Dureza , Calefação , Íons , Teste de Materiais , Tamanho da Partícula
20.
Nanoscale Res Lett ; 8(1): 262, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23724865

RESUMO

We investigated the structural and optical properties of the hierarchically integrated zinc oxide (ZnO) branched submicrorods on carbon fibers (ZOCF) by scanning/transmission electron microscopy, X-ray diffraction, and photoluminescence (PL) measurements. The ZnO submicrorods were facilely synthesized by an electrochemical deposition method on polyacrylonitrile-based carbon fiber sheets used as a substrate. After coating the ZnO seed layer on the surface of the carbon fibers, ZnO submicrorods were densely grown on the nuclei sites of the seed layer. The prepared ZOCF samples exhibited high crystallinity and good PL properties. A feasibility for environmental application in Pb(II) removal from aqueous solutions was also studied. The ZOCF adsorbent exhibited an excellent maximum adsorption capacity of 245.07 mg g-1, which could be practically used in Pb(II) removal from water. These fabricated ZOCFs are potentially useful for multifunctional and environmental devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...